Graphs of girth at least 7 have high b-chromatic number
نویسندگان
چکیده
منابع مشابه
The distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملGroup chromatic number of planar graphs of girth at least 4
Jeager et al introduced a concept of group connectivity as an generalization of nowhere zero flows and its dual concept group coloring, and conjectured that every 5-edge connected graph is Z3-connected. For planar graphs, this is equivalent to that every planar graph with girth at least 5 must have group chromatic number at most 3. In this paper we show that if G is a plane graph with girth at ...
متن کاملAlmost all graphs with high girth and suitable density have high chromatic number
Erdős proved that there exist graphs of arbitrarily high girth and arbitrarily high chromatic number. We give a different proof (but also using the probabilistic method) that also yields the following result on the typical asymptotic structure of graphs of high girth: for all ` ≥ 3 and k ∈ N there exist constants C1 and C2 so that almost all graphs on n vertices and m edges whose girth is great...
متن کاملGirth and Chromatic Number of Graphs
This paper will look at the relationship between high girth and high chromatic number in both its finite and transfinite incarnations. On the one hand, we will demonstrate that it is possible to construct graphs with high oddgirth and high chromatic number in all cases. We will then look at a theorem which tells us why, at least in the transfinite case, it is impossible to generalize this to in...
متن کاملCircular Chromatic Number of Planar Graphs of Large Odd Girth
It was conjectured by Jaeger that 4k-edge connected graphs admit a (2k + 1, k)-flow. The restriction of this conjecture to planar graphs is equivalent to the statement that planar graphs of girth at least 4k have circular chromatic number at most 2 + 1 k . Even this restricted version of Jaeger’s conjecture is largely open. The k = 1 case is the well-known Grötzsch 3-colour theorem. This paper ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2015
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2015.02.017